When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In modulus 12, one can assert that: 38 ≡ 14 (mod 12) because the difference is 38 − 14 = 24 = 2 × 12, a multiple of 12. Equivalently, 38 and 14 have the same remainder 2 when divided by 12. The definition of congruence also applies to negative values. For example:

  5. Modulus - Wikipedia

    en.wikipedia.org/wiki/Modulus

    Bulk modulus, a measure of compression resistance; Elastic modulus, a measure of stiffness; Shear modulus, a measure of elastic stiffness; Young's modulus, a specific elastic modulus; Modulo operation (a % b, mod(a, b), etc.), in both math and programming languages; results in remainder of a division; Casting modulus used in Chvorinov's rule.

  6. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...

  7. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of an integer a with respect to the modulus m is a solution of the linear congruence a x ≡ 1 ( mod m ) . {\displaystyle ax\equiv 1{\pmod {m}}.} The previous result says that a solution exists if and only if gcd( a , m ) = 1 , that is, a and m must be relatively prime (i.e. coprime).