Search results
Results From The WOW.Com Content Network
Steady state is reached after about 5 × 12 = 60 hours. Pharmacokinetics (from Ancient Greek pharmakon "drug" and kinetikos "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. [1]
The method of approach to steady state has also been used to analyze the change in messenger RNA levels when synthesis or degradation changes, and a model has also been reported in which the plateau principle is used to connect the change in messenger RNA synthesis to the expected change in protein synthesis and concentration as a function of time.
The accumulation ratio of a specific drug in humans is determined by clinical studies.According to a 2013 analysis, such studies are typically done with 10 to 20 subjects who are given one single dose followed by a washout phase of seven days (), and then seven to 14 repeated doses to reach steady state conditions.
In pharmacology, clearance ) is a pharmacokinetic ... (at steady-state) is that clearance is a ratio of the mass generation and blood (or plasma) concentration.
In pharmacokinetics, a maintenance dose is the maintenance rate [mg/h] of drug administration equal to the rate of elimination at steady state. This is not to be confused with dose regimen, which is a type of drug therapy in which the dose [mg] of a drug is given at a regular dosing interval on a repetitive basis.
In pharmacokinetics, the rate of infusion (or dosing rate) refers not just to the rate at which a drug is administered, but the desired rate at which a drug should be administered to achieve a steady state of a fixed dose which has been demonstrated to be therapeutically effective. Abbreviations include K in, [1] K 0, [2] or R 0.
In clinical practice, this means that it takes 4 to 5 times the half-life for a drug's serum concentration to reach steady state after regular dosing is started, stopped, or the dose changed. So, for example, digoxin has a half-life (or t 1 / 2 ) of 24–36 h; this means that a change in the dose will take the best part of a week to ...
At steady state, the concentration of free drug in the central compartment (i.e. circulation system) is equal to the concentration of free drug in the peripheral compartment (i.e. body tissues) If steady state is reached, context-sensitive half-life is equal to elimination half-life Only free drug that is in the plasma is metabolised