When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  4. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: =. The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula:

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  6. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    The barycentric coordinates are thus the solution of the linear system () = which is = () where = (|) = + + is twice the signed area of the triangle. The area interpretation of the barycentric coordinates can be recovered by applying Cramer's rule to this linear system.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  8. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Another approach for a coordinate triangle is to use calculus to find the area. A simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon's vertices are grid points: i + b 2 − 1 {\displaystyle i+{\frac {b}{2}}-1} , where i is the number of grid points inside the polygon ...

  9. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Homogeneous coordinates are not uniquely determined by a point, so a function defined on the coordinates, say (,,), does not determine a function defined on points as with Cartesian coordinates. But a condition f ( x , y , z ) = 0 {\displaystyle f(x,y,z)=0} defined on the coordinates, as might be used to describe a curve, determines a condition ...