When.com Web Search

  1. Ads

    related to: how to write direct proportions in geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Proportionality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportionality_(mathematics)

    The variable y is directly proportional to the variable x with proportionality constant ~0.6. The variable y is inversely proportional to the variable x with proportionality constant 1. In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio.

  3. Proportion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportion_(mathematics)

    A proportion is a mathematical statement expressing equality of two ratios. [1] [2]: =: a and d are called extremes, b and c are called means. Proportion can be written as =, where ratios are expressed as fractions.

  4. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  5. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  7. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    These proportions might be written today as equations: [11] KJ/JL = (KJ/AG)(AG/JL) = (JD/GD)(BG/JB). The last compound ratio (namely JD : GD & BG : JB) is what is known today as the cross ratio of the collinear points J, G, D, and B in that order; it is denoted today by (J, G; D, B). So we have shown that this is independent of the choice of ...