Search results
Results From The WOW.Com Content Network
The bond valence method or mean method (or bond valence sum) (not to be mistaken for the valence bond theory in quantum chemistry) is a popular method in coordination chemistry to estimate the oxidation states of atoms. It is derived from the bond valence model, which is a simple yet robust model for validating chemical structures with ...
The rule defines boranes to have four types of bonds besides the terminal B-H bonds: [2] The structures assigned to the letters s, t, y, and x. Where: B-H-B bonds are 3c-2e bonds, taking up three orbitals and two valence electrons. B-B-B bonds are 3c-2e bonds, taking up three orbitals and two valence electrons.
Valence bond calculations using the Dunning's D95 full double-zeta basis set indicate that the dominant resonance structure is the singlet diradical with a long nitrogen-nitrogen bond (structure 1), with Chirgwin-Coulson weight 0.47.
Thus, each sulfur atom is hexavalent or has valence 6, but has oxidation state +5. In the dioxygen molecule O 2, each oxygen atom has 2 valence bonds and so is divalent (valence 2), but has oxidation state 0. In acetylene H−C≡C−H, each carbon atom has 4 valence bonds (1 single bond with hydrogen atom and a triple bond with the other ...
For a given cation, Pauling defined [2] the electrostatic bond strength to each coordinated anion as =, where z is the cation charge and ν is the cation coordination number. A stable ionic structure is arranged to preserve local electroneutrality , so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on ...
There are two possible structures for hydrogen cyanide, HCN and CNH, differing only as to the position of the hydrogen atom. The structure with hydrogen attached to nitrogen, CNH, leads to formal charges of -1 on carbon and +1 on nitrogen, which would be partially compensated for by the electronegativity of nitrogen and Pauling calculated the net charges on H, N and C as -0.79, +0.75 and +0.04 ...
A valence bond structure resembles a Lewis structure, but when a molecule cannot be fully represented by a single Lewis structure, multiple valence bond structures are used. Each of these VB structures represents a specific Lewis structure. This combination of valence bond structures is the main point of resonance theory.
The total wave function is optimized using the variational method by varying the coefficients of the basis functions in the valence bond orbitals and the coefficients of the different spin functions. In other cases only a sub-set of all possible spin functions is used. Many valence bond methods use several sets of the valence bond orbitals.