Search results
Results From The WOW.Com Content Network
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .
Transfinite numbers: Numbers that are greater than any natural number. Ordinal numbers: Finite and infinite numbers used to describe the order type of well-ordered sets. Cardinal numbers: Finite and infinite numbers used to describe the cardinalities of sets.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)
The natural numbers, starting with 1. The most familiar numbers are the natural numbers (sometimes called whole numbers or counting numbers): 1, 2, 3, and so on. Traditionally, the sequence of natural numbers started with 1 (0 was not even considered a number for the Ancient Greeks.)
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...
The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]