Search results
Results From The WOW.Com Content Network
The first atmosphere, during the Early Earth's Hadean eon, consisted of gases in the solar nebula, primarily hydrogen, and probably simple hydrides such as those now found in the gas giants (Jupiter and Saturn), notably water vapor, methane and ammonia.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The layers of the atmosphere are drawn to precise scale. Objects within them, such as the weather balloon are not. It is designed to be displaced at its native resolution (430×700px) or higher. It will render incorrectly (things start disappearing) below that.
Within the mesosphere, temperature decreases with increasing height.This is a result of decreasing absorption of solar radiation by the rarefied atmosphere having a diminishing relative ozone concentration as altitude increases (ozone being the main absorber in the UV wavelengths that survived absorption by the thermosphere). [7]
At upper levels of the atmosphere, this occurs when there is a meeting of a mass of cold air and another hot one along a thin ribbon called a frontal baroclinic zone. We then have the creation of a jet stream that plunges the cold air towards the equator and hot air towards the poles, creating a ripple in the circulation that is called a Rossby ...
Out of an average 340 watts per square meter (W/m 2) of solar irradiance at the top of the atmosphere, about 200 W/m 2 reaches the surface via windows, mostly the optical and infrared. Also, out of about 340 W/m 2 of reflected shortwave (105 W/m 2 ) plus outgoing longwave radiation (235 W/m 2 ), 80-100 W/m 2 exits to space through the infrared ...
An atmosphere (from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere') [1] is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low.
Earth constantly absorbs energy from sunlight and emits thermal radiation as infrared light. In the long run, Earth radiates the same amount of energy per second as it absorbs, because the amount of thermal radiation emitted depends upon temperature: If Earth absorbs more energy per second than it radiates, Earth heats up and the thermal radiation will increase, until balance is restored; if ...