When.com Web Search

  1. Ad

    related to: practice problems with logarithms and examples answer pdf file format tutorial

Search results

  1. Results From The WOW.Com Content Network
  2. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    For example, one can multiply a sine that is less than 0.5 by some power of two or ten to bring it into the range [0.5,1]. After finding that logarithm in the radical table, one adds the logarithm of the power of two or ten that was used (he gives a short table), to get the required logarithm. [1]: p. 36

  3. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    In mathematics, the common logarithm (aka "standard logarithm") is the logarithm with base 10. [1] It is also known as the decadic logarithm , the decimal logarithm and the Briggsian logarithm . The name "Briggsian logarithm" is in honor of the British mathematician Henry Briggs who conceived of and developed the values for the "common logarithm".

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  6. Pollard's rho algorithm for logarithms - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm_for...

    Let be a cyclic group of order , and given ,, and a partition =, let : be the map = {and define maps : and : by (,) = {() + (,) = {+ ()input: a: a generator of G b: an element of G output: An integer x such that a x = b, or failure Initialise i ← 0, a 0 ← 0, b 0 ← 0, x 0 ← 1 ∈ G loop i ← i + 1 x i ← f(x i−1), a i ← g(x i−1, a i−1), b i ← h(x i−1, b i−1) x 2i−1 ← ...

  7. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  8. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  9. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    [11] [36] However, for logarithms that appear in the exponent of a time bound, the base of the logarithm cannot be omitted. For example, O(2 log 2 n) is not the same as O(2 ln n) because the former is equal to O(n) and the latter to O(n 0.6931...). Algorithms with running time O(n log n) are sometimes called linearithmic. [37]