Search results
Results From The WOW.Com Content Network
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). [2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .
A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...
Centripetal force causes the acceleration measured on the rotating surface of the Earth to differ from the acceleration that is measured for a free-falling body: the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north-south axis of the Earth, corresponding to staying ...
Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
The total (mechanical) force that is calculated to induce the proper acceleration on a mass at rest in a coordinate system that has a proper acceleration, via Newton's law F = ma, is called the proper force. As seen above, the proper force is equal to the opposing reaction force that is measured as an object's "operational weight" (i.e. its ...
t. e. Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated ...
A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...