Search results
Results From The WOW.Com Content Network
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
Approximation of a unit doublet with two rectangles of width k as k goes to zero. In mathematics, the unit doublet is the derivative of the Dirac delta function.It can be used to differentiate signals in electrical engineering: [1] If u 1 is the unit doublet, then
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
Using these integration rules makes the calculation of the deflection of Euler-Bernoulli beams simple in situations where there are multiple point loads and point moments. The Macaulay method predates more sophisticated concepts such as Dirac delta functions and step functions but achieves the same outcomes for beam problems.
Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.
From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. In simpler terms, when you take the DTFT of regularly-spaced samples of a continuous signal, you get repeating (and possibly overlapping) copies of the signal's frequency ...
Aitken's delta-squared process is an acceleration of convergence method and a particular case of a nonlinear sequence transformation. A sequence X = ( x n ) {\textstyle X=(x_{n})} that converges to a limiting value ℓ {\textstyle \ell } is said to converge linearly , or more technically Q-linearly, if there is some number μ ∈ ( 0 , 1 ...