When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In proof by contradiction, also known by the Latin phrase reductio ad absurdum (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    Definition [A1] states directly that 0 is a right identity. We prove that 0 is a left identity by induction on the natural number a. For the base case a = 0, 0 + 0 = 0 by definition [A1]. Now we assume the induction hypothesis, that 0 + a = a. Then

  6. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  7. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    However, indirect methods such as proof by contradiction can also be used with contraposition, as, for example, in the proof of the irrationality of the square root of 2. By the definition of a rational number , the statement can be made that " If 2 {\displaystyle {\sqrt {2}}} is rational, then it can be expressed as an irreducible fraction ".

  8. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    From this contradiction we deduce that e is irrational. Now for the details. If e is a rational number, there exist positive integers a and b such that e = ⁠ a / b ⁠. Define the number =! (=!). Use the assumption that e = ⁠ a / b ⁠ to obtain =! (=!

  9. Direct proof - Wikipedia

    en.wikipedia.org/wiki/Direct_proof

    A direct proof is the simplest form of proof there is. The word ‘proof’ comes from the Latin word probare, [3] which means “to test”. The earliest use of proofs was prominent in legal proceedings.