Ads
related to: endpoint of edge graph paper worksheet free
Search results
Results From The WOW.Com Content Network
The Misra & Gries edge coloring algorithm is a polynomial time algorithm in graph theory that finds an edge coloring of any simple graph. The coloring produced uses at most + colors, where is the maximum degree of the graph. This is optimal for some graphs, and it uses at most one color more than optimal for all others.
If G is a graph, the line graph L(G) has a vertex for each edge of G, and an edge for each pair of adjacent edges in G. Thus, the chromatic number of L(G) equals the chromatic index of G. If G is bipartite, the cliques in L(G) are exactly the sets of edges in G sharing a common endpoint. Now Kőnig's line coloring theorem, stating that the ...
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem.
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge ...
An incidence in a graph is a vertex-edge pair such that the vertex is an endpoint of the edge. incidence matrix The incidence matrix of a graph is a matrix whose rows are indexed by vertices of the graph, and whose columns are indexed by edges, with a one in the cell for row i and column j when vertex i and edge j are incident, and a zero ...
The edge-connectivity version of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y (the minimum number of edges whose removal disconnects x and y) is equal to the maximum number of pairwise edge-disjoint paths from x to y.
This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the ...