When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    The converse does not hold; not all Lebesgue-integrable functions are Riemann integrable. The Lebesgue–Vitali theorem does not imply that all type of discontinuities have the same weight on the obstruction that a real-valued bounded function be Riemann integrable on [a, b].

  3. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral appears in the original formulation of F. Riesz's theorem which represents the dual space of the Banach space C[a,b] of continuous functions in an interval [a,b] as Riemann–Stieltjes integrals against functions of bounded variation. Later, that theorem was reformulated in terms of measures.

  4. Riemann mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_mapping_theorem

    In the case of a simply connected bounded domain with smooth boundary, the Riemann mapping function and all its derivatives extend by continuity to the closure of the domain. This can be proved using regularity properties of solutions of the Dirichlet boundary value problem, which follow either from the theory of Sobolev spaces for planar ...

  5. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A number of general inequalities hold for Riemann-integrable functions defined on a closed and bounded interval [a, b] and can be generalized to other notions of integral (Lebesgue and Daniell). Upper and lower bounds. An integrable function f on [a, b], is necessarily bounded on that interval.

  7. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The Lebesgue criterion for integrability states that a bounded function is Riemann integrable if and only if the set of all discontinuities has measure zero. [5] Every countable subset of the real numbers - such as the rational numbers - has measure zero, so the above discussion shows that Thomae's function is Riemann integrable on any interval.

  8. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    Parallel transport can always be defined along curves on a surface using only the metric on the surface. Thus tangent planes along a curve can be identified using the intrinsic geometry, even when the surface itself is not parallelizable. The Euler equations for a geodesic c(f) can be written more compactly as [19]

  9. Riemann–Liouville integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Liouville_integral

    The Riemann–Liouville integral is defined by = () ()where Γ is the gamma function and a is an arbitrary but fixed base point. The integral is well-defined provided f is a locally integrable function, and α is a complex number in the half-plane Re(α) > 0.