When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    Since a second-order expansion for ⁡ [()] has already been derived above, it only remains to find ⁡ [() ()]. Treating () as a two-variable function, the second-order Taylor expansion is as follows:

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:

  4. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    In fact, for a smooth enough function, we have the similar Taylor expansion (+) = | | ()! + (,), where the last term (the remainder) depends on the exact version of Taylor's formula.

  5. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [3] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis.

  6. Universal Taylor series - Wikipedia

    en.wikipedia.org/wiki/Universal_Taylor_series

    Thus to -approximate () = using a polynomial with lowest degree 3, we do so for () with < / by truncating its Taylor expansion. Now iterate this construction by plugging in the lowest-degree-3 approximation into the Taylor expansion of g ( x ) {\displaystyle g(x)} , obtaining an approximation of lowest degree 9, 27, 81...

  7. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    The theorem was proved by Lagrange [2] and generalized by Hans Heinrich Bürmann, [3] [4] [5] both in the late 18th century. There is a straightforward derivation using complex analysis and contour integration ; [ 6 ] the complex formal power series version is a consequence of knowing the formula for polynomials , so the theory of analytic ...

  8. Shift operator - Wikipedia

    en.wikipedia.org/wiki/Shift_operator

    ⁠ The shift operator acting on functions of a real variable is a unitary operator on ⁠ (). In both cases, the (left) shift operator satisfies the following commutation relation with the Fourier transform: F T t = M t F , {\displaystyle {\mathcal {F}}T^{t}=M^{t}{\mathcal {F}},} where M t is the multiplication operator by exp( itx ) .

  9. File:Taylor.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Taylor.pdf

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.