Search results
Results From The WOW.Com Content Network
An inertial navigation system (INS; also inertial guidance system, inertial instrument) is a navigation device that uses motion sensors (accelerometers), rotation sensors and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity (direction and speed of movement) of a moving object without the ...
Inertial guidance uses sensitive measurement devices to calculate the location of the missile due to the acceleration put on it after leaving a known position. Early mechanical systems were not very accurate, and required some sort of external adjustment to allow them to hit targets even the size of a city.
Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal—provided by an external ("offboard") source—as it reflects off the target [1] [2] (in contrast to active radar homing, which ...
A guidance system is usually part of a Guidance, navigation and control system, whereas navigation refers to the systems necessary to calculate the current position and orientation based on sensor data like those from compasses, GPS receivers, Loran-C, star trackers, inertial measurement units, altimeters, etc.
Inertial navigation unit of French IRBM S3 IMUs work, in part, by detecting changes in pitch, roll, and yaw. An inertial measurement unit works by detecting linear acceleration using one or more accelerometers and rotational rate using one or more gyroscopes. [3] Some also include a magnetometer which is commonly used as a heading reference.
Guidance, navigation and control (abbreviated GNC, GN&C, or G&C) is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans.
From this work it is recommended to use the Cholesky decomposition method. In addition to aircraft applications, GPS/INS has also been studied for automobile applications such as autonomous navigation, [ 13 ] [ 14 ] vehicle dynamics control, [ 15 ] or sideslip, roll, and tire cornering stiffness estimation.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code