Search results
Results From The WOW.Com Content Network
The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
The satisfiability problem for a sentence of monadic second-order logic is the problem of determining whether there exists at least one graph (possibly within a restricted family of graphs) for which the sentence is true. For arbitrary graph families, and arbitrary sentences, this problem is undecidable. However, satisfiability of MSO 2 ...
It is #P-complete to compute this quantity, even for bipartite graphs. [11] It is also #P-complete to count perfect matchings, even in bipartite graphs, because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given ...
Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite. [1] However, in some applications of graph theory, a k -partite graph may be given as input to a computation with its coloring already determined; this can happen when the sets of vertices in the ...
In graph theory, a split of an undirected graph is a cut whose cut-set forms a complete bipartite graph.A graph is prime if it has no splits. The splits of a graph can be collected into a tree-like structure called the split decomposition or join decomposition, which can be constructed in linear time.
In graph theory, the Graham–Pollak theorem states that the edges of an -vertex complete graph cannot be partitioned into fewer than complete bipartite graphs. [1] It was first published by Ronald Graham and Henry O. Pollak in two papers in 1971 and 1972 (crediting Hans Witsenhausen for a key lemma), in connection with an application to ...
A bipartite graph with 4 vertices on each side, 13 edges, and no , subgraph, and an equivalent set of 13 points in a 4 × 4 grid, showing that (;).. The number (;) asks for the maximum number of edges in a bipartite graph with vertices on each side that has no 4-cycle (its girth is six or more).