Search results
Results From The WOW.Com Content Network
Regular concrete can typically withstand a pressure from about 10 MPa (1450 psi) to 40 MPa (5800 psi), with lighter duty uses such as blinding concrete having a much lower MPa rating than structural concrete. Many types of pre-mixed concrete are available which include powdered cement mixed with an aggregate, needing only water.
A large number of Indian Standard (IS) codes are available that are meant for virtually every aspect of civil engineering one can think of. During one's professional life one normally uses only a handful of them depending on the nature of work they are involved in. Civil engineers engaged in construction activities of large projects usually have to refer to a good number of IS codes as such ...
Cubic or cylindrical samples of concrete are tested under a compression testing machine to measure this value. Test requirements vary by country based on their differing design codes. Use of a Compressometer is common. As per Indian codes, compressive strength of concrete is defined as: Field cured concrete in cubic steel molds (Greece)
CLSM consists of a mixture of Portland cement, water, aggregate and sometimes fly ash.Unlike ordinary concrete, CLSM has much lower strength. The strength of CLSM is less than 1,200 pounds per square inch (8.3 MPa), while ordinary concrete has strengths exceeding 3,000 pounds per square inch (21 MPa) [citation needed].
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
Mass concrete is defined by American Concrete Institute Committee 207 as "any volume of concrete with dimensions large enough to require that measures be taken to cope with the generation of heat from the hydration of cement and attendant volume change to minimize cracking."
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
The Concrete Centre promotes the use of concrete in construction through the provision of resources to enable designers to follow best practice for the design of concrete and masonry. The Concrete Centre publishes a journal, Concrete Quarterly which was first published by the Cement and Concrete Association in 1947. The journal showcases the ...