When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  3. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  5. Arzelà–Ascoli theorem - Wikipedia

    en.wikipedia.org/wiki/Arzelà–Ascoli_theorem

    So, given ε > 0, let δ = ⁠ ε / 2K ⁠ to verify the definition of equicontinuity of the sequence. This proves the following corollary: This proves the following corollary: Let { f n } be a uniformly bounded sequence of real-valued differentiable functions on [ a , b ] such that the derivatives { f n ′} are uniformly bounded.

  6. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    The sequence at the bottom cannot occur anywhere in the enumeration of sequences above. An infinite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to the even numbers demonstrates. Nevertheless, infinite sets of different cardinalities exist, as Cantor's diagonal argument shows.

  7. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...

  8. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    Here, one can see that the sequence is converging to the limit 0 as n increases. In the real numbers , a number L {\displaystyle L} is the limit of the sequence ( x n ) {\displaystyle (x_{n})} , if the numbers in the sequence become closer and closer to L {\displaystyle L} , and not to any other number.

  9. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    In any metric space, a Cauchy sequence is bounded (since for some N, all terms of the sequence from the N-th onwards are within distance 1 of each other, and if M is the largest distance between and any terms up to the N-th, then no term of the sequence has distance greater than + from ).

  1. Related searches proof sequence is bounded above side of polygon given 0

    proof sequence is bounded above side of polygon given 0 113 side of polygon
    how many side of polygon