Ads
related to: converse of bpt theorem geometry worksheet examples pdf answers gradestudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2] The concept was first published, however, by William Wallace in 1799, [3] and is sometimes called the Wallace line. [4]
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
A converse to Descartes' theorem is given by Alexandrov's uniqueness theorem, according to which a metric space that is locally Euclidean (hence zero curvature) except for a finite number of points of positive angular defect, adding to , can be realized in a unique way as the surface of a convex polyhedron.
Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [ 1 ] : 411 of Feuerbach's theorem uses the converse theorem.