When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    In a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows: The tetrahedron is self-dual, i.e. it pairs with itself. The cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    For example a tetrahedron is a polyhedron with four faces, a pentahedron is a polyhedron with five faces, a hexahedron is a polyhedron with six faces, etc. [16] For a complete list of the Greek numeral prefixes see Numeral prefix § Table of number prefixes in English, in the column for Greek cardinal numbers.

  5. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  6. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.

  7. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    A polyhedron (or polytope in general) is k-isohedral if it contains k faces within its symmetry fundamental domains. [5] Similarly, a k -isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k , or only for some m < k ).

  8. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    These require a more general definition of polyhedra. Grünbaum (1994) gave a rather complicated definition of a polyhedron, while McMullen & Schulte (2002) gave a simpler and more general definition of a polyhedron: in their terminology, a polyhedron is a 2-dimensional abstract polytope with a non-degenerate 3-dimensional realization. Here an ...

  9. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    If a simplicial polyhedron (one with all faces triangles) has all vertex degrees between four and six (inclusive) then it has an ideal representation, but the triakis tetrahedron is simplicial and non-ideal, and the 4-regular non-ideal example above shows that for non-simplicial polyhedra, having all degrees in this range does not guarantee an ...