Search results
Results From The WOW.Com Content Network
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate , and around 4% of cellular enzymes use it (or a thioester ) as a substrate.
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...
Acetyl-CoA is formed into malonyl-CoA by acetyl-CoA carboxylase, at which point malonyl-CoA is destined to feed into the fatty acid synthesis pathway. Acetyl-CoA carboxylase is the point of regulation in saturated straight-chain fatty acid synthesis, and is subject to both phosphorylation and allosteric regulation. Regulation by phosphorylation ...
Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme (EC 6.2.1.1) involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.
The systematic name of this enzyme class is acetyl-CoA:[acyl-carrier-protein] S-acetyltransferase. Other names in common use include acetyl coenzyme A-acyl-carrier-protein transacylase, acetyl-CoA:ACP transacylase, [acyl-carrier-protein]acetyltransferase, [ACP]acetyltransferase, and ACAT. This enzyme participates in fatty acid biosynthesis.
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.
Coenzyme A transferases (CoA-transferases) are transferase enzymes that catalyze the transfer of a coenzyme A group from an acyl-CoA donor to a carboxylic acid acceptor. [ 1 ] [ 2 ] Among other roles, they are responsible for transfer of CoA groups during fermentation and metabolism of ketone bodies .