Search results
Results From The WOW.Com Content Network
Deviation of the "true" period of a pendulum from the small-angle approximation of the period. "True" value was obtained numerically evaluating the elliptic integral. Figure 4. Relative errors using the power series for the period. Figure 5. Potential energy and phase portrait of a simple pendulum.
The period increases asymptotically (to infinity) as θ 0 approaches π radians (180°), because the value θ 0 = π is an unstable equilibrium point for the pendulum. The true period of an ideal simple gravity pendulum can be written in several different forms (see pendulum (mechanics)), one example being the infinite series: [11] [12
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
For a simple pendulum, this definition yields a formula for the moment of inertia I in terms of the mass m of the pendulum and its distance r from the pivot point as, =. Thus, the moment of inertia of the pendulum depends on both the mass m of a body and its geometry, or shape, as defined by the distance r to the axis of rotation.
Drawing of pendulum experiment to determine the length of the seconds pendulum at Paris, conducted in 1792 by Jean-Charles de Borda and Jean-Dominique Cassini. From their original paper. They used a pendulum that consisted of a 1 + 1 ⁄ 2-inch (3.8 cm) platinum ball suspended by a 12-foot (3.97 m) iron wire (F,Q).