Search results
Results From The WOW.Com Content Network
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
Because this includes cooling the systems that remove decay heat from both the primary system and the spent fuel rod cooling ponds, the ESWS is a safety-critical system. [7] Since the water is frequently drawn from an adjacent river, the sea, or other large body of water, the system can be fouled by seaweed, marine organisms, oil pollution, ice ...
In operation, decay heat boils steam, which is drawn into the heat exchanger and condensed; then it falls by weight of gravity back into the reactor. This process keeps the cooling water in the reactor, making it unnecessary to use powered feedwater pumps. The water in the open pool slowly boils off, venting clean steam to the atmosphere.
The first generation of production boiling water reactors saw the incremental development of the unique and distinctive features of the BWR: the torus (used to quench steam in the event of a transient requiring the quenching of steam), as well as the drywell, the elimination of the heat exchanger, the steam dryer, the distinctive general layout ...
A reactor protection system (RPS) is a set of nuclear safety and security components in a nuclear power plant designed to safely shut down the reactor and prevent the release of radioactive materials. The system can "trip" automatically (initiating a scram), or it can be tripped by the operators. Trips occur when the parameters meet or exceed ...
ESBWR's passive safety systems include a combination of three systems that allow for the efficient transfer of decay heat (created from nuclear decay) from the reactor to pools of water outside containment – the Isolation Condenser System, the Gravity Driven Cooling System, and the Passive Containment Cooling System. These systems utilize ...
In light-water reactors, this is achieved by inserting neutron-absorbing control rods into the core, although the mechanism by which rods are inserted depends on the type of reactor. In pressurized water reactors the control rods are held above a reactor's core by electric motors against both their own weight and a powerful spring. A scram is ...
The progenitor of the BWR line was the 5 MW Vallecitos Boiling Water Reactor (VBWR), brought online in October 1957. Six design iterations, BWR-1 through BWR-6, were introduced between 1955 and 1972. This was followed by the Advanced Boiling Water Reactor (ABWR) introduced in the 1990s and the Economic Simplified Boiling Water Reactor (ESBWR ...