When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Today, many heterotrophs and autotrophs also utilize mutualistic relationships that provide needed resources to both organisms. [28] One example of this is the mutualism between corals and algae, where the former provides protection and necessary compounds for photosynthesis while the latter provides oxygen. [29]

  3. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  4. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.

  5. Ecosystem respiration - Wikipedia

    en.wikipedia.org/wiki/Ecosystem_respiration

    Cellular respiration is the overall relationship between autotrophs and heterotrophs.Autotrophs are organisms that produce their own food through the process of photosynthesis, whereas heterotrophs are organisms that cannot prepare their own food and depend on autotrophs for nutrition.

  6. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion). Then the soluble products of digestion for the organism are being broken down for the release of energy (respiration). All heterotrophs depend on autotrophs for their nutrition. Heterotrophic ...

  7. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    A consumer in a food chain is a living creature that eats organisms from a different population. A consumer is a heterotroph and a producer is an autotroph.Like sea angels, they take in organic moles by consuming other organisms, so they are commonly called consumers.

  8. Trophic mutualism - Wikipedia

    en.wikipedia.org/wiki/Trophic_mutualism

    Specifically, "trophic mutualism" refers to the transfer of energy and nutrients between two species. This is also sometimes known as resource-to-resource mutualism. Trophic mutualism often occurs between an autotroph and a heterotroph. [1] Although there are many examples of trophic mutualisms, the heterotroph is generally a fungus or bacteria.

  9. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    The linkages in a food web illustrate the feeding pathways, such as where heterotrophs obtain organic matter by feeding on autotrophs and other heterotrophs. The food web is a simplified illustration of the various methods of feeding that link an ecosystem into a unified system of exchange.