Search results
Results From The WOW.Com Content Network
The term Nyquist Sampling Theorem (capitalized thus) appeared as early as 1959 in a book from his former employer, Bell Labs, [22] and appeared again in 1963, [23] and not capitalized in 1965. [24] It had been called the Shannon Sampling Theorem as early as 1954, [25] but also just the sampling theorem by several other books in the early 1950s.
Download as PDF; Printable version; In other projects ... Nyquist–Shannon sampling theorem; S. Schwartz–Zippel lemma; Shannon–Hartley theorem; Shannon's source ...
Let F be any sampling method, i.e. a linear map from the Hilbert space of square-integrable functions to complex space . In our example, the vector space of sampled signals C n {\displaystyle \mathbb {C} ^{n}} is n -dimensional complex space.
Nonuniform sampling is a branch of sampling theory involving results related to the Nyquist–Shannon sampling theorem. Nonuniform sampling is based on Lagrange interpolation and the relationship between itself and the (uniform) sampling theorem. Nonuniform sampling is a generalisation of the Whittaker–Shannon–Kotelnikov (WSK) sampling theorem.
Download as PDF; Printable version; ... move to sidebar hide. sampling theory may mean: Nyquist–Shannon sampling theorem, digital signal ... Fourier sampling
As with the Nyquist–Shannon sampling theorem, this theorem also assumes an idealization of any real-world situation, as it only applies to functions that are sampled over an infinitude of points. Perfect reconstruction is mathematically possible for the idealized model but only an approximation for real-world functions and sampling techniques ...
An early breakthrough in signal processing was the Nyquist–Shannon sampling theorem. It states that if a real signal's highest frequency is less than half of the sampling rate, then the signal can be reconstructed perfectly by means of sinc interpolation. The main idea is that with prior knowledge about constraints on the signal's frequencies ...
By the Nyquist–Shannon sampling theorem, we can conclude that the minimum number of sampling points without aliasing is equivalent to the area of the time–frequency distribution of a signal. (This is actually just an approximation, because the TF area of any signal is infinite.)