Search results
Results From The WOW.Com Content Network
An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular (e.g. protozoans, [1] bacteria [2]) or multicellular. [3]
Clostridium species are endospore-forming bacteria, and can survive in atmospheric concentrations of oxygen in this dormant form. The remaining bacteria listed do not form endospores. [5] Several species of the Mycobacterium, Streptomyces, and Rhodococcus genera are examples of obligate anaerobe found in soil. [10]
Anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest.
A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent. [1] [2] Some examples of facultatively anaerobic bacteria are Staphylococcus spp., [3] Escherichia coli, Salmonella, Listeria spp., [4] Shewanella oneidensis and Yersinia ...
As facultative anaerobes, they do survive anaerobic conditions, but grow better with a little oxygen. [9] Magnetospirillum gryphiswaldense and Magnetospira sp. QH-2 are aquatic microaerophilic magnetotactic bacteria. The formation of magnetite in such bacteria in general require microaerobic conditions. [1]
Anaerobic infections are caused by anaerobic bacteria. Obligately anaerobic bacteria do not grow on solid media in room air (0.04% carbon dioxide and 21% oxygen); facultatively anaerobic bacteria can grow in the presence or absence of air. Microaerophilic bacteria do not grow at all aerobically or grow poorly, but grow better under 10% carbon ...
Aerotolerant anaerobes do not use oxygen but are not harmed by it. [6] When an organism is able to survive in both oxygen and anaerobic environments, the use of the Pasteur effect can distinguish between facultative anaerobes and aerotolerant organisms. If the organism is using fermentation in an anaerobic environment, the addition of oxygen ...
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.