Search results
Results From The WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Applying above exp-by-squaring algorithm, with "*" interpreted as x * y = xy mod 2345 (that is, a multiplication followed by a division with remainder) leads to only 27 multiplications and divisions of integers, which may all be stored in a single machine word.
Ruby's openssl package has the OpenSSL::BN#mod_exp method to perform modular exponentiation. The HP Prime Calculator has the CAS.powmod() function [permanent dead link ] to perform modular exponentiation. For a^b mod c, a can be no larger than 1 EE 12. This is the maximum precision of most HP calculators including the Prime.
In mathematics, the Lambert W function, also called the omega function or product logarithm, [1] is a multivalued function, namely the branches of the converse relation of the function f(w) = we w, where w is any complex number and e w is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye ...
The exponential function e x for real values of x may be defined in a few different equivalent ways (see Characterizations of the exponential function). Several of these methods may be directly extended to give definitions of e z for complex values of z simply by substituting z in place of x and using the complex algebraic operations. In ...