Search results
Results From The WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Model-free RL algorithms can start from a blank policy candidate and achieve superhuman performance in many complex tasks, including Atari games, StarCraft and Go.Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be combined with RL to create superhuman agents such as Google DeepMind's AlphaGo.
Aside from their empirical performance, activation functions also have different mathematical properties: Nonlinear When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6]
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [ 1 ] : 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
Algorithmic learning theory investigates the learning power of Turing machines. Other frameworks consider a much more restricted class of learning algorithms than Turing machines, for example, learners that compute hypotheses more quickly, for instance in polynomial time.
One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Instance-based learners may simply store a new instance or throw an old instance away. Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF ...
The following is an example of a generic evolutionary algorithm: [6] [7] [8] Generate the initial population of individuals, the first generation, randomly. Evaluate the fitness of each individual in the population. Check, if the goal is reached and the algorithm can be terminated. Select individuals as parents, preferably of higher fitness.