Search results
Results From The WOW.Com Content Network
A p–n junction diode. The circuit symbol is also shown. A p–n junction is a combination of two types of semiconductor materials, p-type and n-type, in a single crystal. The "n" (negative) side contains freely-moving electrons, while the "p" (positive) side contains freely-moving electron holes.
This simple diode clamp will clamp the negative peaks of the incoming waveform to the common rail voltage. A diode clamp circuit can take a periodic alternating current signal that oscillates between positive and negative values, and vertically displace it such that either the positive or the negative peaks occur at a prescribed level. The ...
The width of the depletion region adjusts so the negative acceptor charge on the p-side exactly balances the positive donor charge on the n-side, so there is no electric field outside the depletion region on either side. In this band configuration no voltage is applied and no current flows through the diode.
In a diode, the cathode is the negative terminal at the pointed end of the arrow symbol, where current flows out of the device. Note: electrode naming for diodes is always based on the direction of the forward current (that of the arrow, in which the current flows "most easily"), even for types such as Zener diodes or solar cells where the ...
In a diode, the anode is the terminal represented by the tail of the arrow symbol (flat side of the triangle), where conventional current flows into the device. Note the electrode naming for diodes is always based on the direction of the forward current (that of the arrow, in which the current flows "most easily"), even for types such as Zener ...
Various semiconductor diodes. Left: A four-diode bridge rectifier.Next to it is a 1N4148 signal diode.On the far right is a Zener diode.In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting.
Forward bias (applying a positive voltage to the P-side with respect to the N-side) narrows the depletion region and lowers the barrier to carrier injection (shown in the figure to the right). In more detail, majority carriers get some energy from the bias field, enabling them to go into the region and neutralize opposite charges.
The two types of diode are in fact constructed in similar ways and both effects are present in diodes of this type. In silicon diodes up to about 5.6 volts, the Zener effect is the predominant effect and shows a marked negative temperature coefficient. Above 5.6 volts, the avalanche effect dominates and exhibits a positive temperature coefficient.