Search results
Results From The WOW.Com Content Network
Energy density Specific power ... Low self-discharge nickel–metal hydride battery: 500–1,500 [14] Lithium cobalt oxide: 90 500–1,000 Lithium–titanate: 85–90
This is an extended version of the energy density table from the main Energy density page: ... battery, Sodium–Nickel Chloride, High Temperature: 0.56: battery ...
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li + ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life.
Given the high energy density of gasoline, the exploration of alternative media to store the energy of powering a car, such as hydrogen or battery, is strongly limited by the energy density of the alternative medium. The same mass of lithium-ion storage, for example, would result in a car with only 2% the range of its gasoline counterpart.
Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating.
The lithium–sulfur battery (Li–S battery) is a type of rechargeable battery. It is notable for its high specific energy . [ 2 ] The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light (about the density of water).
LiPo batteries are pervasive in mobile devices, power banks, very thin laptop computers, portable media players, wireless controllers for video game consoles, wireless PC peripherals, electronic cigarettes, and other applications where small form factors are sought. The high energy density outweighs cost considerations.
Their work resulted in a battery that delivered high energy densities, more than 90% efficiency, and could be recharged for up to 2,000 times. The lithium-air batteries are described as the "ultimate" batteries because they propose a high theoretical energy density of up to ten times the energy offered by regular lithium-ion batteries.