Search results
Results From The WOW.Com Content Network
A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetic and nuclear forces. [1] Radioactive decay is a random process at the level of ...
The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay.
Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine. [e] Some of the heavier elements in the periodic table may be revealed to have yet-undiscovered isotopes with longer lifetimes than those listed here. [f] About 338 nuclides are found naturally on ...
It is prevented from having a stable isotope with 4 protons and 6 neutrons by the very large mismatch in proton/neutron ratio for such a light element. (Nevertheless, beryllium-10 has a half-life of 1.36 million years, which is too short to be primordial , but still indicates unusual stability for a light isotope with such an imbalance.)
Glovebox. Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. All naturally occurring materials, including air, water, and soil, can be induced (activated) by neutron capture into some amount of radioactivity in varying degrees, as a result of the production of neutron-rich radioisotopes.
All "stable" isotopes (stable by observation, not theory) are the ground states of nuclei, except for tantalum-180m, which is a nuclear isomer or excited state. The ground state, tantalum-180, is radioactive with half-life 8 hours; in contrast, the decay of the nuclear isomer is extremely strongly forbidden by spin-parity selection rules.
A significant amount of zirconium is formed by the fission process; some of this consists of short-lived radionuclides (95 Zr and 97 Zr which decay to molybdenum), while almost 10% of the fission products mixture after years of decay consists of five stable or nearly stable isotopes of zirconium plus 93 Zr with a halflife of 1.53 million years ...