Search results
Results From The WOW.Com Content Network
Propulsive efficiency comparison for various gas turbine engine configurations. The calculation is somewhat different for reciprocating and turboprop engines which rely on a propeller for propulsion since their output is typically expressed in terms of power rather than thrust. The equation for heat added per unit time, Q, can be adopted as ...
Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =.
When calculating specific impulse, only propellant carried with the vehicle before use is counted, in the standard interpretation. This usage best corresponds to the cost of operating the vehicle. For a chemical rocket, unlike a plane or car, the propellant mass therefore would include both fuel and oxidizer. For any vehicle, optimising for ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The ratio between a propeller's efficiency attached to a ship and in open water (′) is termed relative rotative efficiency. The overall propulsive efficiency (an extension of effective power ()) is developed from the propulsive coefficient (), which is derived from the installed shaft power modified by the effective power for the hull with ...
This equation can be rewritten in the following equivalent form: = / The fraction on the left-hand side of this equation is the rocket's mass ratio by definition. This equation indicates that a Δv of n {\displaystyle n} times the exhaust velocity requires a mass ratio of e n {\displaystyle e^{n}} .
These equations govern the power, efficiencies and other factors that contribute to the design of turbomachines. With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1]
In aerospace engineering, payload fraction is a common term used to characterize the efficiency of a particular design. The payload fraction is the quotient of the payload mass and the total vehicle mass at the start of its journey.