When.com Web Search

  1. Ads

    related to: use perimeter to solve problems worksheet pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Note: Since 2010, almost all information owned by the UK Crown is offered for use and re-use under the Open Government Licence by authority of The Controller of His Majesty's Stationery Office. info See also: Meta for information on usage on Wikimedia wikis.

  3. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    Buffon's needle was the earliest problem in geometric probability to be solved; [2] it can be solved using integral geometry. The solution for the sought probability p , in the case where the needle length l is not greater than the width t of the strips, is

  4. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...

  5. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    Perimeter is the distance around a two dimensional shape, a measurement of the distance around something; the length of the boundary. A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

  6. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  7. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    If a region is not convex, a "dent" in its boundary can be "flipped" to increase the area of the region while keeping the perimeter unchanged. An elongated shape can be made more round while keeping its perimeter fixed and increasing its area. The classical isoperimetric problem dates back to antiquity. [2]