Search results
Results From The WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]
Polygons named for their number of sides Monogon — 1 sided; Digon — 2 sided; Triangle. ... square; kite; Parallelogram. Rhombus (equilateral parallelogram ...
The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...
The diagonals of a square are (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, [1] was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles.
x, y, and z are all functions of the independent variable t which ranges over the real numbers. ( x 0 , y 0 , z 0 ) is any point on the line. a , b , and c are related to the slope of the line, such that the vector ( a , b , c ) is parallel to the line.
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
For example, when transforming the 7-square to the 8-square, we add 15 elements; these adjunctions are the 8s in the above figure. This gnomonic technique also provides a proof that the sum of the first n odd numbers is n 2; the figure illustrates 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2. First five terms of Nichomachus's theorem
Informally: "a pushed-over square" (but strictly including a square, too). Rhomboid: a parallelogram in which adjacent sides are of unequal lengths, and some angles are oblique (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus. [4]