Search results
Results From The WOW.Com Content Network
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
English: Aluminium silicon binary phase diagram for foundry. α: solid solution of silicon in aluminium (cfc, a = 4.04 Å); β: solid solution of aluminium in silicon (cfc, a = 5.43 Å). In the case of Alpax, the eutectic is shifted to 12.1 at% Si (12.5 wt%) due to the presence of sodium.
Aluminum-silicon phase diagram. Aluminum forms a eutectic with silicon, which is at 577 °C, with a Si content of 12.5% [7] or 12.6%. [8] Up to 1.65% Si can be dissolved in aluminum at this temperature. However, the solubility decreases rapidly with temperature. At 500 °C it is still 0.8% Si, at 400 °C 0.3% Si and at 250 °C only 0.05% Si.
A phase diagram for a fictitious binary chemical mixture (with the two components denoted by A and B) used to depict the eutectic composition, temperature, and point. ( L denotes the liquid state.) A eutectic system or eutectic mixture ( / j uː ˈ t ɛ k t ɪ k / yoo- TEK -tik ) [ 1 ] is a type of a homogeneous mixture that has a melting point ...
English: An phase diagram designed to explain the lever rule. Based on an image from Smith, William F.; Hashemi, Javad (2006), Foundations of Materials Science and Engineering (4th ed.), McGraw-Hill, p. 319, ISBN 0-07-295358-6.
This could ease the theoretical phase diagram generation of multicomponent systems. For alloys containing transition metal elements there is a difficulty in interpretation of the Hume-Rothery electron concentration rule, as the values of e/a values (number of itinerant electrons per atom) for transition metals have been quite controversial for ...
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
It may provide or confirm basic enthalpy data needed for the calculation of phase diagrams of metals, via CALPHAD or ab initio quantum chemistry methods. For a binary system composed by elements A and B, a generic Miedema Formula could be cast as Δ H = f ( E l e m e n t A , P h i A , n W S A , V A , E l e m e n t B .