Search results
Results From The WOW.Com Content Network
The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).
The inequality was first proven by Grönwall in 1919 (the integral form below with α and β being constants). [1] Richard Bellman proved a slightly more general integral form in 1943. [2] A nonlinear generalization of the Grönwall–Bellman inequality is known as Bihari–LaSalle inequality. Other variants and generalizations can be found in ...
The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin. Then f and its partial derivatives with respect to x and y vanish at (0,0).
Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming). It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming. [2]
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
In the context of metric measure spaces, the definition of a Poincaré inequality is slightly different.One definition is: a metric measure space supports a (q,p)-Poincare inequality for some , < if there are constants C and λ ≥ 1 so that for each ball B in the space, ‖ ‖ () ‖ ‖ ().