When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Magnetoelectric_effect

    Historically, the first and most studied example of this effect is the linear magnetoelectric effect.Mathematically, while the electric susceptibility and magnetic susceptibility describe the electric and magnetic polarization responses to an electric, resp. a magnetic field, there is also the possibility of a magnetoelectric susceptibility which describes a linear response of the electric ...

  3. Multiferroics - Wikipedia

    en.wikipedia.org/wiki/Multiferroics

    There have been reports of large magnetoelectric coupling at room-temperature in type-I multiferroics such as in the "diluted" magnetic perovskite (PbZr 0.53 Ti 0.47 O 3) 0.6 –(PbFe 1/2 Ta 1/2 O 3) 0.4 (PZTFT) in certain Aurivillius phases. Here, strong ME coupling has been observed on a microscopic scale using PFM under magnetic field among ...

  4. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    The coupling coefficient is a convenient way to specify the relationship between a certain orientation of inductors with arbitrary inductance. Most authors define the range as 0 ≤ k < 1 {\displaystyle 0\leq k<1} , but some [ 28 ] define it as − 1 < k < 1 {\displaystyle -1<k<1\,} .

  5. Coupling coefficient of resonators - Wikipedia

    en.wikipedia.org/wiki/Coupling_coefficient_of...

    The coupling coefficient of resonators is a dimensionless value that characterizes interaction of two resonators. Coupling coefficients are used in resonator filter theory. Coupling coefficients are used in resonator filter theory.

  6. Coupling (physics) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(physics)

    The coefficient of coupling k defines how closely the two circuits are coupled and is given by the equation = where M is the mutual inductance of the circuits and L p and L s are the inductances of the primary and secondary circuits, respectively.

  7. Coupling coefficient - Wikipedia

    en.wikipedia.org/wiki/Coupling_coefficient

    Coupling coefficient, or coupling factor, may refer to: Electromechanical coupling coefficient; Coupling coefficient (inductors), or coupling factor, between inductances; Coupling coefficient of resonators; Coupling factor of power dividers and directional couplers; Clebsch–Gordan coefficients of angular momentum coupling in quantum mechanics

  8. Inductive coupling - Wikipedia

    en.wikipedia.org/wiki/Inductive_coupling

    Coupling may be intentional or unintentional. Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference. k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance

  9. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.