Search results
Results From The WOW.Com Content Network
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
This value is in the denominator of the decay correcting fraction, so it is the same as multiplying the numerator by its inverse (), which is 2.82. (A simple way to check if you are using the decay correct formula right is to put in the value of the half-life in place of "t".
The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant , λ " lambda ", the reciprocal of the mean lifetime (in s −1 ), sometimes referred to as simply decay rate .
Terms "partial half-life" and "partial mean life" denote quantities derived from a decay constant as if the given decay mode were the only decay mode for the quantity. The term "partial half-life" is misleading, because it cannot be measured as a time interval for which a certain quantity is halved.
Alpha decay or α-decay is a type of radioactive decay in which an ... performing the calculation for uranium-232 ... to an equation relating the half-life of a ...
This refers to the time required for half of a given number of radioactive atoms to decay and is inversely related to the isotope's decay constant, λ. Half-lives have been determined in laboratories for many radionuclides, and can range from nearly instantaneous—hydrogen-5 decays in less time than it takes for a photon to go from one end of ...
and are the half-lives (inverses of reaction rates in the above equation modulo ln(2)) of the parent and daughter, respectively, and BR is the branching ratio. In transient equilibrium, the Bateman equation cannot be simplified by assuming the daughter's half-life is negligible compared to the parent's half-life.