Ad
related to: equation of a right triangle example problem
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] The formulas read as follows.
Every acute triangle has three inscribed squares (squares in its interior such that all four of a square's vertices lie on a side of the triangle, so two of them lie on the same side and hence one side of the square coincides with part of a side of the triangle). In a right triangle two of the squares coincide and have a vertex at the triangle ...
Fermat's son Clement-Samuel published an edition of this book, including Fermat's marginal notes with the proof of the right triangle theorem, in 1670. [12] Fermat's proof is a proof by infinite descent. It shows that, from any example of a Pythagorean triangle with square area, one can derive a smaller example.
Any triangle, in which the altitude equals the geometric mean of the two line segments created by it, is a right triangle. The theorem can also be thought of as a special case of the intersecting chords theorem for a circle, since the converse of Thales' theorem ensures that the hypotenuse of the right angled triangle is the diameter of its ...
The formulas show how to transform any right triangle with integer legs into another right triangle with integer legs whose hypotenuse is the square of the first triangle's hypotenuse. A Pythagorean prime is a prime number of the form 4 n + 1 {\displaystyle 4n+1} .