When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  3. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .

  4. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Euclid introduced certain axioms, or postulates, expressing primary or self-evident properties of points, lines, and planes. [39] He proceeded to rigorously deduce other properties by mathematical reasoning. The characteristic feature of Euclid's approach to geometry was its rigor, and it has come to be known as axiomatic or synthetic geometry ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Download as PDF; Printable version; In other projects ... Euclid's theorem (number theory) ... Solutions of a general cubic equation ...

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these. Although many of Euclid's results had been stated by earlier mathematicians, [7] Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. [8]

  7. File:Euclid-Elements.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Euclid-Elements.pdf

    == Description == Euclid's ''Elements'' (Ancient Greek) Compiled for anyone who would want to read the Euclid's work in Greek, especially in order to provide them a printer-friendly copy of the wor: 09:37, 16 April 2007: No thumbnail: 0 × 0 (1.84 MB) Mingshey~commonswiki: 이전 버전으로 되돌렸습니다. 09:35, 16 April 2007: No thumbnail

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.

  9. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Historically, Euclid's parallel postulate has turned out to be independent of the other axioms. Simply discarding it gives absolute geometry , while negating it yields hyperbolic geometry . Other consistent axiom sets can yield other geometries, such as projective , elliptic , spherical or affine geometry.