Ad
related to: similarity definition in geometry examples in real life situation
Search results
Results From The WOW.Com Content Network
Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.
In geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, taking care to preserve the order of adjacency. [1]
Similarity (geometry), the property of sharing the same shape; Matrix similarity, a relation between matrices; Similarity measure, a function that quantifies the similarity of two objects Cosine similarity, which uses the angle between vectors; String metric, also called string similarity; Semantic similarity, in computational linguistics
According to this definition, two objects are similar if there exists a certain type of transformation that translates one object into the other object while leaving certain properties essential for similarity intact. [9] [5] For example, in geometry, two triangles are similar if there is a transformation, involving nothing but scaling ...
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. [2] Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to ...
Kinematic similarity – fluid flow of both the model and real application must undergo similar time rates of change motions. (fluid streamlines are similar) (fluid streamlines are similar) Dynamic similarity – ratios of all forces acting on corresponding fluid particles and boundary surfaces in the two systems are constant.
A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.