Ads
related to: rules for solving logarithmic equations calculator with solution
Search results
Results From The WOW.Com Content Network
If the underlying group is cyclic of order, by substituting as and noting that two powers are equal if and only if the exponents are equivalent modulo the order of the base, in this case modulo , we get that is one of the solutions of the equation () = ().
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
All the complex numbers a that solve the equation = are called complex logarithms of z, when z is (considered as) a complex number. A complex number is commonly represented as z = x + iy, where x and y are real numbers and i is an imaginary unit, the square of which is −1.
TK Solver has three ways of solving systems of equations. The "direct solver" solves a system algebraically by the principle of consecutive substitution. When multiple rules contain multiple unknowns, the program can trigger an iterative solver which uses the Newton–Raphson algorithm to successively approximate based on initial guesses for ...
Each relation contributes one equation to a system of linear equations in r unknowns, namely the discrete logarithms of the r primes in the factor base. This stage is embarrassingly parallel and easy to divide among many computers. The second stage solves the system of linear equations to compute the discrete logs of the factor base.