When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete. [2] In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all ...

  3. In-place algorithm - Wikipedia

    en.wikipedia.org/wiki/In-place_algorithm

    Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...

  4. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    When a path is feasible in X −, it is also feasible in C free. When no path exists in X + from one initial configuration to the goal, we have the guarantee that no feasible path exists in C free. As for the grid-based approach, the interval approach is inappropriate for high-dimensional problems, due to the fact that the number of boxes to be ...

  5. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding ...

  6. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    On the high-level layer, the path between the clusters is planned. After the plan was found, a second path is planned within a cluster on the lower level. [9] That means, the planning is done in two steps which is a guided local search in the original space. The advantage is that the number of nodes is smaller and the algorithm performs very ...

  7. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    A verifier algorithm for Hamiltonian path will take as input a graph G, starting vertex s, and ending vertex t. Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end ...

  8. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  9. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4]