When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), [citation needed] which is almost the terminal velocity of the peregrine falcon diving down on its prey. [4] The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or ...

  6. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a. For a position vector r that is a function of time t, the time derivatives can be computed with respect to t. These derivatives have common utility in the study of kinematics, control theory, engineering and other sciences. Velocity

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  8. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    This is because the travel time between any two points for a non-relativistic moving particle will just be the proper distance (that is, the comoving distance measured using the scale factor of the universe at the time of the trip rather than the scale factor "now") between those points divided by the velocity of the particle.

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Multiplying by the operator [S], the formula for the velocity v P takes the form: = [] + ˙ = / +, where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector / =, is the position of P relative to the origin O of the moving frame M; and = ˙, is the velocity of the origin O.