Search results
Results From The WOW.Com Content Network
In economics, the price elasticity of demand refers to the elasticity of a demand function Q(P), and can be expressed as (dQ/dP)/(Q(P)/P) or the ratio of the value of the marginal function (dQ/dP) to the value of the average function (Q(P)/P). This relationship provides an easy way of determining whether a demand curve is elastic or inelastic ...
Total revenue, the product price times the quantity of the product demanded, can be represented at an initial point by a rectangle with corners at the following four points on the demand graph: price (P 1), quantity demanded (Q 1), point A on the demand curve, and the origin (the intersection of the price axis and the quantity axis).
An example in microeconomics is the constant elasticity demand function, in which p is the price of a product and D(p) is the resulting quantity demanded by consumers.For most goods the elasticity r (the responsiveness of quantity demanded to price) is negative, so it can be convenient to write the constant elasticity demand function with a negative sign on the exponent, in order for the ...
In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (,) developed by John Henry Michell in 1899. [1] The solution is such that the stress components are in the form of a Fourier series in .
The y arc elasticity of x is defined as: , = % % where the percentage change in going from point 1 to point 2 is usually calculated relative to the midpoint: % = (+) /; % = (+) /. The use of the midpoint arc elasticity formula (with the midpoint used for the base of the change, rather than the initial point (x 1, y 1) which is used in almost all other contexts for calculating percentages) was ...
The elasticity coefficient is an integral part of metabolic control analysis and was introduced in the early 1970s and possibly earlier by Henrik Kacser and Burns [1] in Edinburgh and Heinrich and Rapoport [2] in Berlin. The elasticity concept has also been described by other authors, most notably Savageau [3] in Michigan and Clarke [4] at
The price elasticity of supply (PES or E s) is commonly known as “a measure used in economics to show the responsiveness, or elasticity, of the quantity supplied of a good or service to a change in its price.” Price elasticity of supply, in application, is the percentage change of the quantity supplied resulting from a 1% change in price.
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]