When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  3. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):

  4. Graph center - Wikipedia

    en.wikipedia.org/wiki/Graph_center

    Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. [3] Thus vertices in the center ( central points ) minimize the maximal distance from other points in the graph. This is also known as the vertex 1-center problem and can be extended to the vertex k-center problem .

  5. Centered tree - Wikipedia

    en.wikipedia.org/wiki/Centered_tree

    The numbers show each node's eccentricity. In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers. Given a graph, the eccentricity of a vertex v is defined as the greatest distance from v to any other vertex. A center of a graph is a vertex with minimal ...

  6. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in symbols, = (,). It can be thought of as how far a node is from the node most distant from it in the graph. The radius r of a graph is the minimum eccentricity of any vertex or, in symbols,

  7. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  8. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    The eccentricity e is defined as: = . From Pythagoras's theorem applied to the triangle with r (a distance FP) as hypotenuse: = ⁡ + (⁡) = (⁡) + (⁡ + ⁡) = ⁡ + ⁡ = (⁡) Thus, the radius (distance from the focus to point P) is related to the eccentric anomaly by the formula

  9. Body roundness index - Wikipedia

    en.wikipedia.org/wiki/Body_roundness_index

    The degree of circularity of an ellipse is quantified by eccentricity, with values between 0 to 1, where 0 is a perfect circle (waist circumference same as height) and 1 is a vertical line. [1] To accommodate human shape data in a greater range, Thomas and colleagues mapped eccentricity in a range of 1 to 20 by using the equation: [1]