Search results
Results From The WOW.Com Content Network
Two current-carrying wires attract each other magnetically: The bottom wire has current I 1, which creates magnetic field B 1. The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which ...
The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8] In the frame of the magnet, that conductor experiences a magnetic force.
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The magnetic force component of the Lorentz force manifests itself as the force that acts on a current-carrying wire in a magnetic field. In that context, it is also called the Laplace force . The Lorentz force is a force exerted by the electromagnetic field on the charged particle, that is, it is the rate at which linear momentum is ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This sparked a great deal of research into the relation between electricity and magnetism. André-Marie Ampère investigated the magnetic force between two current-carrying wires, discovering Ampère's force law. In the 1850s Scottish mathematical physicist James Clerk Maxwell generalized these results and others into a single mathematical law.