Search results
Results From The WOW.Com Content Network
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.
The first few possible orders of a symmetric conference matrix are n = 2, 6, 10, 14, 18, (not 22, since 21 is not a sum of two squares), 26, 30, (not 34 since 33 is not a sum of two squares), 38, 42, 46, 50, 54, (not 58), 62 (sequence A000952 in the OEIS); for every one of these, it is known that a symmetric conference matrix of that order exists.
A matrix with constant skew-diagonals; also an upside down Toeplitz matrix. A square Hankel matrix is symmetric. Hermitian matrix: A square matrix which is equal to its conjugate transpose, A = A *. Hessenberg matrix: An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix
Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. [2] The set of all skew-Hermitian n × n {\displaystyle n\times n} matrices forms the u ( n ) {\displaystyle u(n)} Lie algebra , which corresponds to the Lie group U( n ) .
Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator [1] represented in an orthonormal basis over a real inner product space.
If we use a skew-symmetric matrix, every 3 × 3 skew-symmetric matrix is determined by 3 parameters, and so at first glance, the parameter space is R 3. Exponentiating such a matrix results in an orthogonal 3 × 3 matrix of determinant 1 – in other words, a rotation matrix, but this is a many-to-one map.
where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix. This definition can be extended to 2 n × 2 n {\displaystyle 2n\times 2n} matrices with entries in other fields , such as the complex numbers , finite fields , p -adic numbers , and function fields .
A square matrix of order 4. The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns.