When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  3. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.

  4. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...

  5. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]

  6. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  7. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume:

  9. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    At ambient pressure, P=0 GPA is known, so, the volume, pressure, and temperature are all given. Then, authors [9] predict the pressure value from the given (V, T) from pressure-dependent thermal expansion equation of state. The predicted pressures match with the known experimental value of 0 GPa, see in Figure 2.