Search results
Results From The WOW.Com Content Network
Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. The unit of measurement called standard atmosphere (atm) is defined as 101,325 Pa. [2]
As the pascal is a very small unit relative to industrial pressures, the kilopascal is commonly used. 1000 kPa ≈ 145 lbf/in 2. Approximate conversions (rounded to some arbitrary number of digits, except when denoted by "≡") are shown in the following table.
10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed] +13 kPa +1.9 psi High air pressure for human lung, measured for trumpet player making staccato high notes [48] < +16 kPa +2.3 psi Systolic blood pressure in a healthy adult while at rest (< 120 mmHg) (gauge pressure) [44] +19.3 kPa +2.8 psi
An example of this is the air pressure in an automobile tire, which might be said to be "220 kPa (32 psi)", but is actually 220 kPa (32 psi) above atmospheric pressure. Since atmospheric pressure at sea level is about 100 kPa (14.7 psi), the absolute pressure in the tire is therefore about 320 kPa (46 psi).
The bar is a metric unit of pressure defined as 100,000 Pa (100 kPa), though not part of the International System of Units (SI). A pressure of 1 bar is slightly less than the current average atmospheric pressure on Earth at sea level (approximately 1.013 bar).
Following is the master list of conversion data used by Module: ... km2 to 1000 × 1000 of the base unit, m, ... kPa: Millimetre of mercury: Pa: Pa: 1: pascal: SI: psi:
The difference between one millimeter of mercury and one torr, as well as between one atmosphere (101.325 kPa) and 760 mmHg (101.3250144354 kPa), is less than one part in seven million (or less than 0.000015%). This small difference is negligible for all practical purposes. In the European Union, the millimeter of mercury is defined as [6]
The ground pressure of motorized vehicles is often compared with the ground pressure of a human foot, which can be 60 – 80 kPa while walking or as much as 13 MPa for a person in spike heels. [ 3 ] Increasing the size of the contact area on the ground (the footprint ) in relation to the weight decreases the unit ground pressure.